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摘要

近年來，於現在的的音訊處理技術中，我們已經看見在許多技術，如伴奏生

成、人聲採譜上都已經取得了一定的成果。然而至今卻還未有將兩者結合的成果出

現過，因此，我們融合了目前這些出色的成果，並改進其效率，進而提出了新的

「即時伴奏系統」。在這個系統中，我們優化了過去人聲採譜模型的運算效率，以

及提出精簡過的HMM-base伴奏生成模型，以在有限的時間內實時生成伴奏。我們

認為這個成果將會幫助許多單人歌手獨力創造更完整的表演。
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Abstract

The goal of this work is to propose a real-time accompaniment system to assist singers

in complete a simple demo by themselves.

By current audio signal technology, we have seen some achievements on accompani-

ment generation and some on vocal transcription. Basing on these great works, we propose

a novel“Real-time accompany generation system” to combine current state-of-arts and

further improve the efficiency to reach real-time human interactive mode. To reach a ac-

ceptable computing efficiency, we do a lot pruning on original model and apply DenseNet

concept to enhance its gradient propagate.

In this system, we integrate efficiency improved vocal transcription model and sim-

plified HMM-base accompaniment generation model which can better fit small training set

situation to output musical accompaniment in limited time. We believe that this work will

benefit many solo singers to deliver their live shows or demos by themselves whenever they

need.

As a result, we reach real-time under 180 BPM which covers most of pop music and

propose a highly improved vocal transcription model with 1/1000 parameters and 1/50

FLOPs.
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Chapter 1

Introduction

Virtual singer is an important technique and we have developed many and mature

techniques for singing voice synthesis in our AI lab, which enable our virtual singer to sing

a song given its music score and lyrics previously. However, the virtual singer can only

passively sing a song according to the music score and cannot interact with human singers

if the song score is not given in advance. To extend the virtual singer project to interact with

human singers, we needs to develop techniques to capture the human singing voices in real

time, namely the singing voice transcription. Therefore, we intend to develop a real-time

music accompaniment generation system as the first step to enter the interactive virtual

singer field. The first interactive singing problem is to design an interactive system that can

generate the accompany music to the singer singing in real time. According to the current

audio signal technologies, there had been some achievements on accompany generation

such as [1] [2] and some on vocal transcription like [3] [4] [5]. However, as far as we

know, there is still not yet any practicable applications based on these two techniques, so

we are motivated by the thought as how we can combine both works together and deliver a
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useful application to the interactive virtual singer applications. That is to develop real time

music accompany generation techniques according to the singing voice of a human singer.

Though there have been some great achievements in each aspect, there are still many

difficulties to be overcome in order to build a practicable real-time accompaniment gener-

ation system. First, as [6] proposed, piano transcription so far can only reach about 90%

accuracy. [5] as a state-of-art in the vocal transcription, it shows no more than 80% accu-

racy and requires much computing resource that is hard to be fulfilled in real-time system.

Compared with instrumental transcription, vocal transcription is more complex because

of the diverse timbres and unstable pitches in human singing voices. Unstable pitch will

make the transcription model misjudge the onset or offset against the nature voice trembles

and diverse timbres will increase the complexity of features that result in difficulty for the

learning process. Secondly, to reach the real-time performance, we are facing a trade-off in

that on one hand, we usually have to clip the input signals into extremely short frames so

that we can respond to users in very short delay after one frame has been well processed.

However, on the other hand, this method is challenging and almost impracticable for the

accompaniment generation system since it can hardly extract enough melody information

in less than the half of a bar. Thus, with waiting time and processing time, a noticeable

time delay is an inevitable and severe problem to be overcome.
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Figure 1.1: (left)Spectrum of human voice on C4, (right)Spectrum of guitar on C4. As
figures show, left one varies much more than right one.

To deal with these difficulties, in this dissertation we propose a DNN model structure

that can provide better onset detection accuracy. The onset prediction accuracy is a crucial

problem in the music accompaniment generation system because it dominates the rhythm

of songs and requiring less computing resources. Meanwhile, we build a very light accom-

paniment generation system including a Markov chain method inspired by [7] to predict

future chord flow and an algorithm using onset prediction distribution to detect downbeats

of rhythm. With this system, we are able to generate an improvised and reasonable ac-

companiment with very little computing resources and overcome the delay issue by the

prediction modules. The reason why the computing resources reduction is taken into con-

sideration is that we expect that most commercial applications are on the mobile phones

which possess much less computing power. Even though we haven’t reached this ultimate

goal but this work provides a solid baseline toward it.

Here is the summarized goal of our proposal that we are supposed to generate a

suitable midi accompaniment with given BPM and tones according to an arbitrary vocal

melody in real-time. By real time it means the demanding computing time should be less
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than output length of a vocal song at each step. We tentatively set the output length as half

a bar. If the output length is too short our generated accompaniment may be very unstable;

if it’s too long the long delay may cause chord and rhythm predictions difficult and our

generated accompaniment will become boring.

We conducted both objective and subjective evaluations for the system. In the objec-

tive evaluation, our work performs well with high similarity with human-made works in

both harmony and rhythm aspects, which means they’re very similar to the music accom-

paniment created by human.

Our main contributions:

1. Lighten the state of art in vocal transcription model to the one with 1/1000 size, 1/50

FLOPs and only 3 percentage accuracy drop.

2. Build a complete real-time accompanying system and provide related objective and

subjective experiment results.

In this work, we propose a real-time system which allows the direct audio input from

a microphone and generates pleasing accompaniments in midi form. By the generated ac-

companiment midi-sheets, the virtual singer can easily sing the harmony for human singers.

Furthermore, an important module in this system is the real-time vocal transcription that

can be considered as the virtual singer’s ears. With the ears, the virtual singer can be turned

into playing a role in more innovative applications such as an AI duet virtual singer. Thus,

in this work, it not only focuses on the real time music accompany generation but also can

actually serve as a blueprint for future interactive virtual singer applications.

In the next section, we will briefly summarize the similar works and related techniques
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so far. Then, we will go through the whole structure of this work and introduce used

techniques. In the experiment section, objective and subjective experiment results with

some interesting insights are provided.
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Chapter 2

Related Work

As our best acknowledge, except [8], we didn’t find other research doing similar work

based on vocal melody. In [8], researchers are trying to produce real-time accompaniment

with given music score. In our opinion, it’s more like a score tracking technique but a

accompaniment generation technique. Moreover, in [8], they use STFT technique to extract

frequency domain information (spectrum) and propose an algorithm to do pitch detection

and score segmentation based on spectrum, but we didn’t find accuracy evaluation of vocal

transcription. There is only a case report to show it can detect onset position for a specific

song. Thus, we prefer to choose [5] as our vocal transcription module base rather than [8].

Then, we are about to discuss some related works about our modules, vocal transcrip-

tion and accompaniment generation.

• Vocal transcription

As [9] mentions, about vocal transcription, since 2005 researchers have presented some

useful approaches of melody transcription [10]. At that time, researchers were still dealing
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with instrumental monophonic melody and popular algorithm then were using autocorrela-

tion method to figure out the frequency candidate with largest possibility. From 2008, more

and more researchers aren’t satisfied with algorithms which only focus on time domain

information, Short-time Fourier transform(STFT) or high-resolution Fast Fourier Trans-

form (FFT) are enormously applied into their preprocess step like [11] [12]. More recently,

researchers start to pull vocal transcription issue into Deep Neural Network (DNN) field.

[3] is published in 2016 and use two DNN models as Voice Activity Detection (VAD) and

f0 estimation modules with STFT processed input. In 2019, [5] used Resnet [13] as DNN

model and proposed“hierarchical classification” label to further identify different state-

ments of vocal melody. Our work is also inspired by [5] and treats it as our baseline of

vocal transcription system.

• Accompaniment generation

On the other hand, accompaniment generation technique is much more mature than vocal

transcription field we just mentioned. Especially in DNN field, as [14] mentions, people

have done much effort to utilize DNN model to learn music features like counterpoint or

musical structures. More recently, [3] used reinforcement learning to build human-machine

interactively duet system and [2] used transformer to capture more long-term features to

generate multi-instrument accompaniment. However, This kind of techniques requires

many computing resources to support model inference, which is not acceptable in real-time

system. To reduce required computing resources, we found [7] which used HMM model to

select proper chord sequences. This work inspires us a basic chord prediction model with

low computing resources but we want to use a simpler way to express this process because
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we have only limited pop music chord flow data. The detail of how we simplify it into a

Markov chain will be illustrate in the next section.
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Chapter 3

Methodology

We first illustrate the overview flow of the tasks performed in our real-time vocal

melody accompany generation system as in Figure 3.1. It consists of three major modules:

1. Vocal transcription

2. Rhythm generation

3. Chord generation.

The vocal transcription module detects the on-off notes from real-time audio vocal

signals that are used by the rhythm generation module and the chord generation module to

generate the rhythms and predict the chords respectively. The real time input is the original

real time audio signals of the vocal melody. It is processed by an combined frequency and

periodicity (CFP) approach [15] which use not only spectrum but cepstrum to analyze vocal

signal in both frequency and periodicity sides. Beside this method it also applies short time

Fourier transform(STFT) and a deep learning Resnet18 model as the music transcription

model to predict the on/off notes in the original vocal audio signals.
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To explain the definition of real time processing, the time flow of the input data pro-

cessing is illustrated in Figure 3.2. It shows that the half a bar is processed in one step

to generate the output. We allow the system to ”listen to ” one bar vocal signal before

generating an accompaniment output with half a bar length. It means if we can generate

an output within the time of half a bar, we can continuously output accompaniment in real

time. Because the first output is based on the input signal at Bar 2.1 while the next output is

based on the input signal at Bar 2.2, there is no loss of the data as shown in Figure 3.2. So

the processing time for the system to generate accompany can not exceed the time bound of

half a bar to achieve the real time goal. within this time bound, the system must complete

the tasks of transcription, rhythm prediction and chord prediction in order to generate the

complete accompany music output.

10



Figure 3.1: The overview of the proposed real-time music accompany generation system

Figure 3.2: The time flow of the proposed real-time music accompany generation system

We then describe each module in detail in the section 3.1, 3.2 and 3.3 respectively.
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3.1 Vocal Transcription

• Label annotation

In order to transcribe the singing voice melody of a singer, we must extract the audio

signals and turn them into their corresponding symbolic music notes correctly. Following

the representation of [5], we apply the ”Hierarchical classification model” which denotes

an audio signal as S, A, O, Ō, X, X̄ , and T as the silence, activation, onset, non-onset,

offset, non-offset, and transition, respectively to annotate an voice audio signal. Using

this representation, we can easily build a loss function for different annotation labels and

improve the classification accuracy.

S and A are a set of label to represent if there is a obvious active vocal sound in the

given signal frame; O and Ō are also a label set to represent if there is a onset of a note in

the given signal frame. And, X and X̄ are the one for offset of a note.

• Data representation

In this part, we will introduce how our input data looks like and how we process it

before sending to our model. The CFP feature extraction method in pre-preprocess mainly

follow the same one used in [5].

STFT

First, we begin with the Fourier transform applications in the audio processing do-

main. Generally, the audio input is recorded as the time domain signal that is known as the

wave-form. However, this kind of representation only expresses the magnitude variation

that is quite complicated to analyze the detailed information of signals especially when we
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are interested in its frequency condition. Fortunately, the Fourier transform allows us de-

pict the magnitude condition in different frequency bands by the Formula 3.1.

Xk =
∑N−1

n=0 xne
−i2π kn

N

(3.1)

As a Fourier transform equation, Xk denotes the spectrum signal; xn denotes the orig-

inal signal frame; N is the number of original signal frame; k denotes the index of spectrum

frequency bands.

In this formula, we can observe the frequency distribution of the signals, but it’s not

sufficient for us to analyze the audio time domain. In this situation, we can obtain an

averaged distribution of the whole signal instead of the variation of frequency with time

shifting. Thus, we need to further divide the whole signal into little frames which are short

enough to represent variation with time shifting and long enough to provide the needed

frequency resolution. Next step, we apply a windowing method and the discrete Fourier

transform (DFT) to each frame to obtain the local frequency distributions as Formula 3.2.



STFT {xn} (m,ω) ≡ X(m,ω) =
∑∞

n=−∞ xnw(n−m)e−inω

(3.2)

This formula is based on DFT and the only new things are m denoting our hop size ,w

denoting the window function and ω denoting the angular frequency.

In this thesis, we use three different window sizes, “743, 372, 186”, which will be

introduced in the next section and a fixed hop size 320 as our hyper-parameters.

CFP feature extraction

In the pre-processing stage, we apply two different feature extraction methods to en-

hance the information of magnitude variation and fundamental frequency(f0). To enhance

the information of magnitude variation, based on [16], we treat spectrum difference as a

better representation to show the magnitude variation which is crucial when we are trying to

detect onset and offset positions. In the Formula 3.3, we regard k as the index of spectrum

frequency bands, n as the index of time, and X as magnitude part of STFT. The forward

spectral difference S+ and the backward spectral difference S− are the time-forward and

the time-backward respectively.

S+ = ReLU(X[k, n+ 1]−X[k, n− 1])

S− = ReLU(X[k, n− 1]−X[k, n+ 1])

(3.3)



ReLU(·) denotes the element-wise rectified linear unit. By ReLU(·), S+ only shows

the increasing magnitude part and set all decreasing magnitude part as zero, vice versa.

The combined frequency and periodicity (CFT) approach [15] we used will enhance

the fundamental frequency and suppress the subharmonics (f0/n) and harmonics (nf0).

This approach will combine both the frequency-domain information and the time-domain

information. By multiplying them together, because the harmonics and the sub-harmonics

in different domains show the reversed patterns they will be offset by each other in this step

and fundamental frequency remains. In this approach, we have an N-point DFT matrix F

and an inverse DFT matrix F-1.

Z0[k, n] := σ0(WfX)

Z1[q, n] := σ1(WtF
−1Z0)

Z2[k, n] := σ2(WfFZ1)

(3.4)

where the high-pass filters Wf and Wt in frequency and time domain respectively, and the

corresponding activation functions σi for each stage is shown as Formula 3.5. X denotes

the input signal; Zi[k,n] denotes the transformed signal from index k.



σi(Z) = |relu(Z)|γi , i = 0, 1, 2

(3.5)

where 0 ≤ γi ≤ 1

Note that we need to map Z1 to the frequency domain because it’s in the frequency

domain in the formulas. To deal with it, we follow [5] to apply two sets of filter banks with

174 triangular filters ranging from 80 Hz to 1000 Hz and there are 48 bands per octave,

respectively in the time and frequency domains. Moreover, we use 3 different sample

sizes, 186, 372, and 743 of the Hann windows to increase the input feature resolution as

recommended in [17]. In Formula 3.6, we denote the filtered Z1, Z2 in log-scale as Ẑ1, Ẑ2.

Z[p, n] = Ẑ1[p, n] ∗ Ẑ2[p, n]

(3.6)

where 0 ≤ γi ≤ 1; p denotes the index of log-frequency bands; ∗ is an element-dot

operation. The equations 3.6 exactly show the CFP method we apply.

• Data augmentation

To overcome the limitation of a small dataset size, we did two kinds of data augmentations



before training.

First, we use the synthesis module of ”worldvocoder”[18] to generate different vocal

versions with one or two semi-steps of a higher or lower key. In other words, each training

vocal clip will become five different versions, origin, 1-key higher, 2-key higher, 1-key

lower, 2-key lower in the end. This step enriched our dataset and effectively increase our

performance.

The reason why only use two semi-step key augmentation is the limitation of synthesis

module of ”worldvocoder”. By our human listening check, key augmentation will bring

our data inevitable quality deterioration and it will aggravate along with the increase in the

augmentation intensity and the two semi-step key augmentation is the worst version we

can still recognize the original melody. Thus, we think it will be noise in our dataset if we

apply the key augmentation over this range.

Secondly, we apply volume augmentation in our training process. In every training

step, before we start training we will randomly scale the magnitude of the whole spectrum.

This augmentation mathematically equals to directly scaling the volume of the time domain

signal since STFT function is a linear function. Thus, the process will looks like .

s ∗ STFT (x) = STFT (s ∗ x)

where s ∈ R denotes the scale parameter we apply to the raw signal.

By this volume augmentation, we not only mitigate the overfitting problem caused by

the small size but also enhance the robustness to volume variation of this model.

• The Deep Learning Model



In the model structure, we lighten Resnet [13] used in [5] mainly by reducing the

number of layers and replacing some skip-connection by the connections proposed in

Densenet[19] and further speeding it up with minimum performance loss. Meanwhile,

we attempt to apply Resnest[20] to enhance the accuracy with almost the same parameters,

but it causes slower computing speed resulted from split the channel structure.

Resnet

When researchers try to increase the layers in DNN model to extract more high level

features, it’s a common phenomenon that the gradient may become uncontrollable, either

exploding or vanishing. To solve this problem, [13] proposed a residual adding method to

mitigate it.

Lightening the model

The strategy to lighten this model is to reduce the parameters from the deepest and

the most time-consuming part. By Pytorch analysis tool, we found that the fourth layer in

original model costs over 20% computing resources and the training loss will constantly

drop when the training is going even the performance may already be achieved their bound.

Thus, the two steps we took are removing redundant layers from our model and reducing

the channel number in each layer to eliminate the model parameters. Meanwhile, to im-

prove the training efficiency and the effectiveness of the gradient propagation, we applied

the dense structure between layers as in [19] . In Figure 3.3, it shows, we enhance the con-

nection within layers to make gradient propagation more effective and reduce the number

of channels from the beginning to eliminate the computation cost.



Figure 3.3: Difference between baseline model and ours

Loss function

We use the sum of binary cross entropy of the active statement, the transition state-

ment, the onset statement and the offset statement as the loss function to optimize the model

variables as ”HCN2” method in [5] as Formula 3.7 shows. One more thing worth mention-

ing isBCE(ytri, ˆytri) put here is an additional term to make transition label more important

to model.

LOSS(y, ŷ) := BCE(ytri, ˆytri) +BCE(yact, ˆyact)

+BCE(yon, ŷon) +BCE(yoff , ˆyoff )

(3.7)



where BCE denotes binary cross entropy function; ytri, yact, yon, yoff are further labels

show if there is a transition, active vocal sound, onset or offset statement.

3.2 Rhythms generation out of the vocal melody

We know the stable drum patterns can in general be considered as the basic rhythm in

the pop music. However, it can be quite obscure or missing in the vocal melody in prac-

tice. Thus, we propose the method of generating proper rhythms basing merely on vocal

melody. By vocal transcription we have done previously time segments of notes and on-

set distribution are provided by our model. Because strict downbeats detection is a very

complex work and require a lot computing resource as in [21], to reduce computing time

we apply a compromised method to detect downbeats. To detect positions of downbeats

in short time, we use the peaks of onset distribution from our vocal transcription model

because they generally appear when the magnitude drastically increases, which is a typical

feature of downbeats and we use this feature to simulate downbeats i n this work. Al-

though this is not a precise definition of downbeats, it still provide an similar result with

human-made accompaniment in our experiment. In this work, to avoid predicting unstable

rhythms, we only detect the downbeat with the highest probability in each bar.

By onset peak detection, we can find a specific onset time which shows the downbeat

of vocal melody. Then, because the temporal uncertainty of the vocal melody that may

come from amateur singer, we need to stick the downbeat to the eighth note to stabilize

the tempo. The reason why we can use the downbeat position in the last bar as the current



accompaniment rhythm is the fact that the pop music rhythm usually stay unchanged in

several bars to prevent a listener from being interfered. Thus, even if there is a delay for

one bar, our rhythm prediction is still reliable in most of bars.

Beside the downbeat, we need other decorative beats to enrich our rhythm. First, we

always set the first beat as bass beat where will be a complete chord with a one octave

lower root note. Secondly, to complement the melody bar with relatively few notes, we add

decorative beats on 2ed and 3rd if the detected downbeat is in the second half of the bar and

7th and 8th if the detected downbeat is in the first half of the bar. By this post-adjust, our

accompaniment will better complement the vocal melody when it comes to a part with less

variety.

3.3 Chord prediction in real time from a short period of

prior vocal audio signals

• Pitch Detection

Pitch detection is another critical module. Though there have been many great ac-

complishments by DNN methods, they are rarely being practicable as the real-time system

because of their computational cost. To minimize the cost, we apply a high-efficient audio

signal process tool, the worldvocoder [18], and a light algorithm to overcome the pitch

detection issue in vocal pitch tracking.

Worldvocoder



”Worldvocoder” is a high speed audio signal synthesis system which can extract fun-

damental frequency, spectral envelope and aperiodic parameter from wave form signal and

reversely synthesize wave form signal from these features. In this work, we use extracted

fundamental frequency feature to predict pitches in each note. More specifically, our pitch

prediction is based on the fundamental frequency feature extracted from the Worldvocoder.

But there are still some post-processing we need to do to obtain stable note pitches. First,

we have to map the frequency feature to midi numbers as musical interval. To reach this

goal, we can use every 0.1 second as time frames and do ceiling or flooring to fit midi

numbers. However, with this direct process, we confronted with very unstable results that

are resulted from the attack time and the release time due to human voice is very unstable.

By repeated observation, we found 1/2 to 3/4 period in every note is relatively stable and

fit the truly listening cognition of audience. Thus, in this work we only use this period to

do our estimation.

Figure 3.4: Example of unstable pitches in attack time and release time

Secondly, because worldvocoder applies ”DIO” [22] which is based on largest prob-

ability of periodical examination on signal to reach fast and relatively stable f0 estimation

and human voice is so unstable that f0 won’t always possess largest magnitude, we have to

smooth some mistaken as higher or lower one octave notes to prevent abrupt pitch leaps.



• Chord estimation

In [7], researchers use HMM model to predict the harmonic chord according to given

notes. However, in this work, HMM model may not be well trained because of lack of

data of pop music lead sheets. As an alternative solution, we simplified the HMM model

into a pure transition probability matrix and a chord determination matrix like a Markov

chain. To build the transition probability matrix, we collect frequently used chord flows

and calculate the occurrence probability of each chord given two previous chords. About

chord determination matrix, we simply build a matrix to record the duration time of every

notes and select the chord with maximum duration time of the chord-tones. The calculating

algorithm is as following shows.

Algorithm 1 Chord estimation
1: procedure Chord estimation(N ) . N denotes the set of all notes, a note with C pitch

and 0.4 second duration will be record as (0, 0.4)
2: Initialize chord matrix int M [7][7]. To show chord structure, for example we use

1, 0, 1, 0, 1, 0, 0 to represent C major
3: Initialize float V [7]
4: for all n in N do
5: for i in range(7) do
6: V [i] += M [i][n1] ∗ n2 . Plus the value of note duration, if the note pitch is

in chord structure
7: end for
8: end for
9: return argmax(V ) . Select the chord with highest duration sum

10: end procedure

Beside the mentioned methodology, because of inevitable time delay we have to pre-

dict on chord flow to provide a real-time harmonic accompaniment for the vocal melody.

In this, work, we use two previous chords to predict current chord according to common

pop music chord flow statistical data. Our prediction process is based on the probability of



all alternative chords given previous two chords to randomly choose the next chord. This is

equivalent to the bi-gram approach in the NLP language model. By applying this random

process, we diversify our accompaniment and make it more like an improvisation of the

chord. We also provide the calculating algorithm as following one.

Algorithm 2 Current chord prediction matrix
1: procedure Matrix generation(S) . S denotes the set of all chord flows
2: Initialize intM [7][7][7] . To record 3-chords flow
3: for all s in S do . s looks like (0,1,6) for C-D-A chord flow
4: M [s1][s2][s3] += 1
5: end for
6: for i in range(7) do
7: for j in range(7) do
8: M [i][j] /= SUM(M [i][j])
9: end for

10: end for
11: return M . Given C-D chord flow, M[0][1] is the probability of next chord
12: end procedure

Moreover, as we show in Figure3.5, because we use half a bar as our input frame

size we can use a temporary prediction when we haven’t finished processing the whole bar

information (Bar n.1 + Bar n.2) and start correcting it when the whole bar information is

finished.



Figure 3.5: Chord prediction algorithm

3.4 Other details

• Volume adaptation

To fit a vocal melody better, we also developed volume adaptation module to allow the

system automatically adjust the volume of the accompaniment along with a vocal volume



variation. To reach this goal, we set an original volume reference at the beginning when

users start to input their voice. In the following bars, system will base on the ratio of

volume between the current part and the referenced part to automatically adjust the volume

of accompaniment. Without this module, the accompaniment may overwhelm the vocal

melody especially in verse part.



Chapter 4

Experiments and Results

4.1 Real-time feasibility

To show a better view of how our system can support real-time operating demand,

we have done some run time experiments on our developing platform which is MSI GP75

laptop with i7-9750H CPU and GTX 1660 Ti GPU. Table 4.1 is the result we run our system

with direct vocal melody file input, which shows the fact that our computing time is much

less than one step duration. In this work, we develop our algorithm to provide one-step

long accompaniment by two-steps previous information as we’ve shown in section 3.3.

In other words, we can reach real-time effect if it’s possible to generate output accom-

paniment within one step duration. Here we set one ”step” as a half of a bar. For example,

in 60 BPM condition, because one bar duration is 4 seconds if we can complete our compu-

tation within a half bar, 2 seconds, we can reach the real-time effect. As you can see, on our
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developing platform we can easily reach this requirement in 60, 120 and 180 BPMs which

have covered most of existed pop musics. The reason why we choose different BPMs

to conduct our experiments is that in addition to the varying computing cost, there is still

some fixed cost like I/O, which will result in an uneven proportion between the input length

and the computing time. It also means that the real-time effect in a higher BPM is much

more challenging. In fact, to deal with songs with an even higher BPM whose computation

time is over the time requirement limit in some specific melodies and accompany devices,

we can still downgrade its BPM to conduct the accompaniment prediction. Of course, it

will make the accompaniment quality downgraded as less harmonic with the vocal melody

because we have used a compromised less accurate approach.

Table 4.1: Run time experiment

BPM Steps Step duration Time cost per step

60 137 2 1.1441

120 275 1 0.609

180 413 0.66 0.4431
1 Step duration, Total time cost, Time cost per step are all

recorded in second.
2 One step here is regarded as half a bar.

4.2 Dataset

• Vocal Transcription

To compare the results with the baseline, we followed [5] to use the datasets, TONAS

[23] [24] which consisted of 71 acappella sung melodys, as our training dataset. In addition,
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we evaluate the proposed method on the ISMIR2014 song melody dataset [25] as [5] did.

In comparison with other generative models, this dataset is relatively small. However, we

didn’t find obvious overfitting in 30 epochs training using this dataset. Thus, we regard its

size being reasonable for this task.

• Accompaniment Generation

Since the accompaniment sheets dataset of the pop music is hard to obtain, we tried

to use the most popular chord flows as our chord prediction data. The reason why it works

is the fact that current pop music almost applies similar chord flows that covered a lot of

portion in the pop music, especially in Chinese pop music.

4.3 Evaluation

• Lighten Model

Experimental meaning

By applying these methods, we can lighten our model size to 1/1000 from original one

and with only 1/50 FLOPs(floating point operations) with only 3 percentage F1 score(note)

loss. And this model is also the model we consider best fitting real-time system because of

its super efficient tradeoff on computing cost and performance.

Beside the lighten model we mentioned, we also constructed a model with both better per-

formance and less computing cost to show the fact that the modified structure isn’t merely

a tradeoff but a truly improved model. With our new model, when we set the channel
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number as 128 we obtain a model with about 1/8 model size, 60% FLOPs and apparently

better performance in terms of F1 score in both onset and note prediction which are what

we focus on in this work. The reason why this model can reach better result is due to that

the gradient vanishing or explosion issues resulted from enormous parameters are being

mitigated, which has been also proved in [19] in comparison with Resnet.

Meanwhile, this experiment also shows the fact that our pitch detection algorithm men-

tioned in section3.3 at least provides similar note pitch accuracy in comparison with the

DNN based method in [5].

Table 4.2: Performance of the proposed models

Name Parameters FLOPs onset(F1) offset(F1) note(F1)

baseline 11198k 188.64M 0.786 0.759 0.594
Lighten(k=128) 1532.8k 102.97M 0.8553 0.6824 0.6279
Lighten(k=32) 268.9k 31.02M 0.8063 0.6749 0.5634
Lighten(k=8) 19.8k 4.29M 0.7967 0.6709 0.566
Lighten(k=4) 5.9k 1.85M 0.6864 0.5538 0.3487

1 k denotes the number of channels extended in ”Channel Extension Block”

• Accompaniment generation quality

We conduct both objective and subjective evaluations. To prevent our experiment from

being dominated by specific parts, we use the first verse and the first chorus of our songs

as samples. In objective one, we ask the singer to sing a specific midi melody in which we

have an original human-made accompaniment as a ground truth and check the difference

between our prediction and the ground truth.

We choose these three sample songs for this evaluation, and provide relevant informa-

tion as Table4.3 shows.
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Table 4.3: Information of sample songs

Name Singer Gender Language BPM Tonic Release year

Shape of you Ed Sheeran Male English 96 E major 2017
Goodbye G.E.M Female Chinese 68 G major 2015

Sunny day Jay Chou Male Chinese 69 G major 2003

About chord evaluation, to be honest, it’s very difficult to recognize a chord “correctly”

because the same melody may have different acceptable chords that can proposed by even

human musicians. Thus, in this work we focus on only harmony between chords and

notes. We calculate a “note in chord ratio” (NCR) to represent the harmonious level of our

accompaniment.

In Table 4.4, we evaluate NCR in 3 different songs and find that the NCR is very sim-

ilar to that of the human-made accompaniment as our ground truth in harmony aspect. It is

also worth mentioning that in the song ”Sunny day” we even have higher NCR in compar-

ison with the ground truth. It is because that the human-made accompaniment usually use

a cycle chord flow which may sometimes provide a much more stable but less harmonious

accompaniment in the sense of NCR with the vocal melody.

Table 4.4: NCR of sample songs

Name Ground Truth Ours

Shape of you 0.5 0.4103
Goodbye 0.6126 0.6036

Sunny day 0.4263 0.538

About rhythm evaluation, as we mentioned in section 3.2, because drum pattern is not

an explicit information in the vocal melody and the accompaniment rhythm is relatively

free in pop music, we can generate several different accompaniment patterns for the same
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melody without any violation sense. Thus, we will evaluate if our downbeats are located

on the positions of onsets notes in the music sheets. If most of our downbeats satisfy this

requirement, the rhythm we generate will basically fit the vocal melody.

In Table 4.5, we evaluate ”Hit ratio” in 3 different songs and find that our ”Hit ratio”

is also very similar to that of the human-made accompaniment. It is also worth mentioning

that in the song ”Shape of you” we have a much lower ”Hit ratio” in comparison to other

songs. It is because it has a high BPM and its rap style makes it relatively difficult for our

model to capture the downbeats information.

Table 4.5: Hit ratio of sample songs

Name Ground Truth Ours

Shape of you 0.8333 0.758
Goodbye 0.6333 0.6222

Sunny day 0.8804 0.8695

On the subjective evaluation, because the pop music accompaniment is usually com-

posed with multiple instruments such as drum, guitar and bass it’s unreasonable to directly

compare the original accompaniment with ours. We invite well-educated musician to com-

pose a simple accompaniment with piano as the compared instrument and receive feedback

from 38 listeners. In our experience, we will provide a clip without accompaniment in

advance. Then, we list three versions of clips which are human composing version, model

composing version and original version without label. In other words, listeners don’t know

which version they are listening. We ask listeners to score three versions of songs respec-

tively after listening 30 seconds clips. About our listeners, We find these people on social

media such as Facebook and Instagram. They are with various musical background and

join this experiment for nearly no payment.
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According to Figure4.1, we can see the median values are not far from human com-

posing ones’. Though we obviously can’t beat human composers now, it still shows that

we have generated a comparable work against human composing ones. Here is also one

thing worth mentioning that we have a relatively better result in Song 1 which is even better

than human composing version. The reason of it is considered as the fact that it’s the only

one English song and our model is trained by English training dataset, which will provide

more accurate transcription and generate more suitable accompaniment on English vocal

melody.

Figure 4.1: Version1: Human composing version, Version2: Model composing version,
Version3: Original version; ”x” in the box is marked as mean value and dash line in the
box is marked as median value. Separated spots are marked as outliers.

About ranking, we can see the fact that even in relatively worse works there are still

some listeners prefer our works to human composing ones. By this observation, we think

our works may still be able to satisfy listeners in specific occasions.
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Figure 4.2: We rank the version of highest score as first rank, second highest one as second
rank and the lowest one as third rank.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this work, we presented a practicable real-time pop music accompaniment genera-

tion system which bases on vocal transcription and accompaniment generation techniques.

Our contributions are focused on how to integrate these two techniques into a practicable

application and how to reduce the computing cost to reach real-time level in as many as

possible devices.

First, we developed several light algorithms to generate reasonable accompaniment of

given vocal melody such as ”Markov chain chord prediction” and ”downbeat based rhythm

generation”. By these algorithms, we can utilize the note on-offset information output from

vocal transcription to further construct pleasing accompaniment and overcome inevitable

time delay issue we mentioned.

Secondly, we simplified almost all modules to the simplest structure still able to output

acceptable result as possible as we can. The proposed algorithms in this work are mainly
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based on achievements of previous works and improved by eliminating unnecessary steps to

reach faster computing speed and acceptable output. So far, we successfully allow gaming

laptop level devices run this system in real-time.

We clearly understand that this work can not perfectly solve general real-time accom-

paniment generation needs. However, we provided a fundamental and practicable solution

for this issue. In our opinion, it won’t take too long that our lab can release a commercially

practicable version or other related application.

5.2 Future Work

In this work, there are some issues we left because of study time limitation. We will

overcome these step by step and deliver a more complete work in the future.

• BPM and tone automatically detection

Since these are important parameters in our system and vary between songs from

songs, we treat them as needed parameters users have to set manually. By really practice,

we found that it’s not convenient and user may not be able to provide these parameters if

they are lack of musical background. Thus, we would like provide a more user friendly

version with this function.

• Dataset extension

Though we didn’t observe apparent overfitting in current dataset, we are still willing

to train this model on larger one. Besides size issue, current dataset is recorded in very high

quality which is very difficult to reach in common recording environment. Thus, a lower

quality but larger dataset may be a better choice to train our model.
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• Bottom layer API implementation limitation

To demonstrate our work, we need to play midi file directly to avoid transformation

delay so we use ”pygame” to reach it. However, ”pygame” player doesn’t support parallel

processing for loading midi and playing midi. Thus, there is always a short blank between

bars in real-time playing. Because we think this is only a demonstration in python and will

be easily solved when it comes to other platform, we didn’t pay a lot effort on solving this

issue. About recording, we apply ”pyaudio” to help our audio input. To remove unused

input in buffer, we will clean it in the first three steps and ensure there is no pre-recorded

signals in buffer.
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Figure 1: Parts of our subjective test questionnaire to demonstrate how we conduct our
survey
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